本ページはプロモーションが含まれています
Kaggle Grandmasterに学ぶ 機械学習 実践アプローチ

出版社:マイナビ出版
出版日:2021年08月24日頃
ISBN10:4839974985
ISBN13:9784839974985
販売価格:2,959円
本書は世界各国で出版・公開された書籍 "Approaching (Almost) Any Machine Learning Problem" の翻訳書です。豊富なコード例と機械学習にまつわる基礎的な内容を取り上げていきます。 交差検証や特徴量エンジニアリングなどモデル作成以前の重要な要素にも紙面が割かれ、コードの再現性やモデルのデプロイといった話題にも踏み込みます。 モデル作成では、表形式のデータセットだけでなく、画像認識や自然言語処理に関する内容が具体的な実装と共に示されます。 本書の節々から、性能を追求するだけではなく実運用にも重きを置いた著者の姿勢が垣間見えるでしょう。 "KaggleのGrandmasterが書いた本"と聞くと高尚な話題が展開される印象を受ける方もいるかもしれませんが、実態は実践的なプログラミング解説書です。Kaggleコミュニティに限らず機械学習に興味を持つ多くの方に手に取っていただきたいと考えています。 この本ではコードが非常に重要です。何が起こっているのかを理解したければ、コードを注意深く見て、"自分で" 実装しなければなりません。  If you didn't code, you didn't learn.(コードを書かねば、何も学べない。) ぜひ自らの手でコードを実装し、学びを深めてください。 第0章 実行環境の準備 第1章 教師あり学習と教師なし学習 第2章 交差検証 第3章 評価指標 第4章 機械学習プロジェクトの構築 第5章 質的変数へのアプローチ 第6章 特徴量エンジニアリング 第7章 特徴量選択 第8章 ハイパーパラメータの最適化 第9章 画像分類・セグメンテーションへのアプローチ 第10章 テキストの分類・回帰へのアプローチ 第11章 アンサンブルとスタッキングへのアプローチ 第12章 コードの再現性やモデルのデプロイへのアプローチ 第0章 実行環境の準備 第1章 教師あり学習と教師なし学習 第2章 交差検証 第3章 評価指標 第4章 機械学習プロジェクトの構築 第5章 質的変数へのアプローチ 第6章 特徴量エンジニアリング 第7章 特徴量選択 第8章 ハイパーパラメータの最適化 第9章 画像分類・セグメンテーションへのアプローチ 第10章 テキストの分類・回帰へのアプローチ 第11章 アンサンブルとスタッキングへのアプローチ 第12章 コードの再現性やモデルのデプロイへのアプローチ
お気に入り追加
ショップ

古本・中古価格

在庫詳細
アマゾン(中古)
検索中...
楽天市場(中古)
検索中...
Yahoo!ショッピング(中古)
検索中...
au PAY マーケット(中古) icon
検索中...
メルカリ
検索中...
楽天ラクマ
検索中...
Yahoo!フリマ
検索中...
ネットオフ
検索中...
駿河屋
検索中...
ブックオフオンライン
検索中...
スーパー源氏
検索中...
日本の古本屋
検索中...
ジモティー
検索中...
Yahoo!オークション
検索中...
モバオク
検索中...
DMM通販(中古)
検索中...
HMV & BOOKS(中古)
検索中...
ebookjapan(電子書籍)
検索中...
BookLive(電子書籍)
検索中...
honto(電子書籍)
検索中...
楽天kobo(電子書籍)
検索中...
紀伊国屋(電子書籍)
検索中...
お気に入り追加

新品・買取・口コミ

履歴すべて削除

キャンペーン・割引クーポン

©2006-2025 Bookget  古本買取  運営情報