本ページはプロモーションが含まれています
詳解ディープラーニング 第2版

著者:巣籠悠輔
出版社:マイナビ出版
出版日:2019年11月27日頃
ISBN10:4839969515
ISBN13:9784839969516
販売価格:3,740円
ニューラルネットワークの理論とディープラーニングの実装について丁寧に解説。実装には、Python(3.x)とディープラーニング向けライブラリKeras(2.x)、TensorFlow(2.x)、PyTorch(1.x)を用います。 本書では、自然言語処理をはじめとした時系列データ処理のためのディープラーニング・アルゴリズムに焦点を当てているのも大きな特徴の1つです。本書の[第1版](2017年)以降に次々と登場している新しい手法やモデルを丁寧に説明、記事も大幅にボリュームアップしました。 [本書の構成] 1章 数学の準備:ニューラルネットワークのアルゴリズムを理解するための数学の知識、偏微分と線形代数の基本を学びます。アルゴリズムが複雑になってもこの2つを押さえておけばきちんと理解できます。 2章 Pythonの準備:ディープラーニングのアルゴリズムを実装するため、Python環境の構築およびPythonの基本から代表的なライブラリの使い方までを解説します。 3章 ニューラルネットワーク:ニューラルネットワークとは何か、どういった手法かを解説します。単純パーセプトロン、ロジスティック回帰、多クラスロジスティック回帰、多層パーセプトロンを扱います。 4章 ディープニューラルネットワーク:ディープラーニングはニューラルネットワークのモデルの発展形です。ニューラルネットワークから「ディープ」ニューラルネットワークになるうえで発生する課題とそれを解決するテクニックについて解説します。 5章 リカレントニューラルネットワーク:ニューラルネットワークに「時間」という概念を取り込むとどのようなモデルになるのか。通常のディープラーニングのモデルではうまく扱うことができない時系列データの扱いに特化したモデルであるリカレントニューラルネットワーク(RNN)とその手法LSTM、GRUについて取り上げます。 6章 リカレントニューラルネットワークの応用:時系列データの扱いに関しては、自然言語処理で新しいモデルが考えられてきました。本章では、Encoder-Decoder、Attention、Transformerについて学んでいきます。 付録 ライブラリ内部の処理を理解するためのグラフの知識と、Pythonのデコレータ @tf.function の実装例、Keras、TensorFlow、PyTorchによるモデルの保存・読み込みについて解説します。
お気に入り追加
ショップ

古本・中古価格

在庫詳細
アマゾン(中古)
検索中...
楽天市場(中古)
検索中...
Yahoo!ショッピング(中古)
検索中...
au PAY マーケット(中古) icon
検索中...
メルカリ
検索中...
楽天ラクマ
検索中...
Yahoo!フリマ
検索中...
ネットオフ
検索中...
駿河屋
検索中...
ブックオフオンライン
検索中...
スーパー源氏
検索中...
日本の古本屋
検索中...
ジモティー
検索中...
Yahoo!オークション
検索中...
モバオク
検索中...
DMM通販(中古)
検索中...
HMV & BOOKS(中古)
検索中...
ebookjapan(電子書籍)
検索中...
BookLive(電子書籍)
検索中...
honto(電子書籍)
検索中...
楽天kobo(電子書籍)
検索中...
紀伊国屋(電子書籍)
検索中...
お気に入り追加

新品・買取・口コミ

関連書籍

履歴すべて削除

キャンペーン・割引クーポン

©2006-2025 Bookget  古本買取  運営情報